4,376 research outputs found

    Recycling Parrondo games

    Full text link
    We consider a deterministic realization of Parrondo games and use periodic orbit theory to analyze their asymptotic behavior.Comment: 12 pages, 9 figure

    Fractal diffusion coefficient from dynamical zeta functions

    Full text link
    Dynamical zeta functions provide a powerful method to analyze low dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand even simple one dimensional maps can show an intricate structure of the grammar rules that may lead to a non smooth dependence of global observable on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.Comment: 8 pages, 2 figure

    Anomalous transport: a deterministic approach

    Full text link
    We introduce a cycle-expansion (fully deterministic) technique to compute the asymptotic behavior of arbitrary order transport moments. The theory is applied to different kinds of one-dimensional intermittent maps, and Lorentz gas with infinite horizon, confirming the typical appearance of phase transitions in the transport spectrum.Comment: 4 pages, 4 figure

    Superstable cycles for antiferromagnetic Q-state Potts and three-site interaction Ising models on recursive lattices

    Full text link
    We consider the superstable cycles of the Q-state Potts (QSP) and the three-site interaction antiferromagnetic Ising (TSAI) models on recursive lattices. The rational mappings describing the models' statistical properties are obtained via the recurrence relation technique. We provide analytical solutions for the superstable cycles of the second order for both models. A particular attention is devoted to the period three window. Here we present an exact result for the third order superstable orbit for the QSP and a numerical solution for the TSAI model. Additionally, we point out a non-trivial connection between bifurcations and superstability: in some regions of parameters a superstable cycle is not followed by a doubling bifurcation. Furthermore, we use symbolic dynamics to understand the changes taking place at points of superstability and to distinguish areas between two consecutive superstable orbits.Comment: 12 pages, 5 figures. Updated version for publicatio

    Instability statistics and mixing rates

    Get PDF
    We claim that looking at probability distributions of \emph{finite time} largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincar\'e recurrences in the -quite delicate- case of dynamical systems with weak chaotic properties.Comment: 5 pages, 5 figure

    Performance of a C4F8O Gas Radiator Ring Imaging Cherenkov Detector Using Multi-anode Photomultiplier Tubes

    Full text link
    We report on test results of a novel ring imaging Cherenkov (RICH) detection system consisting of a 3 meter long gaseous C4F8O radiator, a focusing mirror, and a photon detector array based on Hamamatsu multi-anode photomultiplier tubes. This system was developed to identify charged particles in the momentum range from 3-70 GeV/c for the BTeV experiment.Comment: 28 pages, 23 figures, submitted to Nuclear Instruments and Method

    Singular continuous spectra in a pseudo-integrable billiard

    Full text link
    The pseudo-integrable barrier billiard invented by Hannay and McCraw [J. Phys. A 23, 887 (1990)] -- rectangular billiard with line-segment barrier placed on a symmetry axis -- is generalized. It is proven that the flow on invariant surfaces of genus two exhibits a singular continuous spectral component.Comment: 4 pages, 2 figure

    Instability statistics and mixing rates

    Get PDF
    We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative estimates of polynomial decay rates of time correlations and Poincar\ue9 recurrences in the-quite-delicate case of dynamical systems with weak chaotic properties

    Efficient Diagonalization of Kicked Quantum Systems

    Full text link
    We show that the time evolution operator of kicked quantum systems, although a full matrix of size NxN, can be diagonalized with the help of a new method based on a suitable combination of fast Fourier transform and Lanczos algorithm in just N^2 ln(N) operations. It allows the diagonalization of matrizes of sizes up to N\approx 10^6 going far beyond the possibilities of standard diagonalization techniques which need O(N^3) operations. We have applied this method to the kicked Harper model revealing its intricate spectral properties.Comment: Text reorganized; part on the kicked Harper model extended. 13 pages RevTex, 1 figur

    Accelerating cycle expansions by dynamical conjugacy

    Full text link
    Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed
    • …
    corecore